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Abstract: Multi-sender authentication codes allow a group of senders to construct an authenticated message for
a receiver such that the receiver can verify authenticity of the received message. In this paper, we construct two
multi-sender authentication codes with arbitration from Linear codes. The parameters and the probabilities of
deceptions are also calculated.

Key–Words: Multi-sender, Authentication code, Arbitration, Linear code, Finite field

1 Introduction
In a group communication scenario or communication
network, information security consists of confidential-
ity and authentication. Confidentiality is to prevent
the confidential information from decrypting by ad-
versary. The purpose of authentication is to ensure
the sender is real and to verify the information is in-
tegrated. Digital signature and authentication codes
are two important means of authenticating the infor-
mation. In addition, they can provide good service
in the network. However, traditional digital signature
has been unable to fully meet the guarantee of infor-
mation reliability. In many cases, they require indi-
viduals to cooperate on the same message sign, the so-
called multi signature, then send to the receiver. The
receiver receives this message, and verifies its effec-
tiveness. This way is not realistic, and the signature
length will multiply with the number of signers. Also,
digital signature is computationally secure, in prac-
tical, assume that the computing power of adversary
is limited and a mathematical problem is intractable
and complex. So it is dissatisfied. But authentication
codes are able to ensure the reliability of the infor-
mation, meantime, they are unconditionally safe, rel-
atively simple. Therefore it is necessary to introduce
some authentication knowledge. About traditional au-
thentication codes, a lot of researches have been de-
veloped. In 1974, Gilbert, Mac Williams and Sloane
constructed the first authentication code [1], it is a
landmark in the development of authentication the-
ory. During the same period, Simmons studied the au-
thentication theory and established three participants
and four participants certification models [2]. Wan

Zhexian constructed an authentication code without
arbitration from the subspace of the classical geom-
etry [3]. In the case of transmitter and receiver are
not honest, Ma Wenping, Wang Xinmei, Gao You,
Chen Shangdi, Li Ruihu constructed a series of au-
thentication codes with arbitration [4-7], which pro-
moted the growth of authentication codes in further.
However, with the flourish development of communi-
cation system, such traditional two users authentica-
tion codes are no longer suitable for network require-
ments, multi-sender and multi-receiver authentication
codes come into being. This paper will focus on multi-
sender authentication codes. Multi-sender authentica-
tion system refers to that a group of senders coopera-
tively send a message to the receiver, then the receiver
should be able to ascertain that the message is authen-
tic. About this case, many scholars had also a lot of
researches. Ma Wenping, Desmedt, Du Qingling and
Martin et al had made great contributions on multi-
sender authentication codes [8-12]. Again, with the
expansion of the scope of application, it is very neces-
sary for us to research on multi-transmitters authenti-
cation system with arbitration. In this paper, two con-
structions of multi-sender authentication codes with
arbitration using linear codes will be given, the param-
eters and maximum probabilities of success in vari-
ous attacks are also computed. Until now, we have
not found that someone who ever constructed a multi-
sender authentication code using linear code. There-
fore, this paper will play an important role for us in
expanding our thinking. Meantime, it would enable us
to have a new understanding on authentication codes.

In this paper, let GF (q) be the finite field with
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q elements, where q is a power of a prime. We use
GF (q)n denote the n-dimensional row vector space
over GF (q), and GF (q)k×n denote the set of all
k × n matrices over GF (q). The sets of all non-zero
elements of GF (q)n and GF (q)k×n are denoted as
GF (q)n∗ and GF (q)k×n∗, respectively. The transpo-
sition of a matrix a is denoted by at.

The rest of the paper is organized as follows. In
section 2 we describe models of multi-sender authen-
tication codes. In section 3 we give the calculating
formulas of the probabilities of success with respect
to various attacks. We present, in section 4, two new
constructions of multi-sender codes with arbitration.
Finally, we conclude the paper.

2 The Models of Multi-sender Au-
thentication Codes with Arbitra-
tion

In the actual computer network communications,
multi-sender authentication codes with arbitration in-
clude sequential model and simultaneous model. Se-
quential model is that each sender uses its own encod-
ing rules to encode a source state orderly, and the last
sender sends the encoded message to the receiver, the
receiver receives the message and verifies whether the
message is legal or not. Simultaneous model is that
all senders use their own encoding rules to encode a
source state, and each sender sends the encoded mes-
sage to the synthesizer respectively, then the synthe-
sizer forms an authenticated message and sends it to
the receiver, the receiver receives the message and ver-
ifies whether the message is legal or not. In this paper,
we will adopt to the second model.

In a simultaneous model, there are four par-
ticipants: a group of senders P = {P1, P2, · · · ,
Pn}, a arbiter, for the distribution keys to senders
and receiver, including solving the disputes between
them, a receiver R and a synthesizer who only
runs the trusted synthesis algorithm. Let C =
(C1, C2, · · · , Cn, C0; fi, g) be the multi-sender au-
thentication code, the code works as follows: each
sender and receiver has their own authentication
code, respectively. Let Ci = (S,Ei, Ti; fi)(i =
1, 2, · · · , n) be the sender’s authentication codes,
C0 = (S,ER, T ; g) be the receiver’s authentication
code, h : T1 × T2 × · · · × Tn −→ T be the synthe-
sis algorithm, πi : E −→ Ei be a sub-key generation
algorithm. For authenticating a message, the senders
and the receiver should comply with protocols:

(1) The arbiter randomly selects a encoding rule
eϵE and sends ei = πi(e) to the i-th sender Pi(i =
1, 2, · · · , n) secretly; Then he calculates eR using e

according to a effective algorithm, and secretly sends
eR to the receiver R;

(2) If the senders would like to send a source state
s to the receiver R, Pi computes ti = fi(s, ei)(i =
1, 2, · · · , n) and sends mi = (s, ti)(i = 1, 2, · · · , n)
to the synthesizer through an open channel;

(3) The synthesizer receives (s, (t1, t2, · · · , tn))
and calculates t = h(t1, t2, · · · , tn) using the synthe-
sis algorithm h, then sends message m = (s, t) to the
receiver R;

(4) When the receiver R receives the message
m = (s, t), he checks the authenticity by verifying
whether t = g(s, eR) or not. If the equality holds, the
message is authentic and is accepted. Otherwise, the
message is rejected.

We assume that the arbitrator and the synthesizer
are credible, though they know the encoding rules of
the senders and the receiver, they will not participate
in any communication activities. When transmitters
and receiver are disputing, the arbitrator settles it. At
the same time, we assume that the system follows the
Kerckhoff’s principle which except the actual used
keys, the other information of the whole system is
public.

3 The calculation formulas
In the whole system, we assume P = {P1, P2, · · · ,
Pn} are a group of senders, R is the receiver, Ei is the
encoding rules set of Pi, EP = E1 × · · · × En is the
encoding rules set of P , ER is the decoding rules set
of receiver R, S is the source state space, T is the tag
space and M = S × T is the message space. Now, let
us consider various attacks. Here, there are five kinds
of attacks:

(1) The opponent’s impersonation attack: the
largest probability of an opponent’s successful imper-
sonation attack is PI . Then

PI = max
m∈M

{
| {eR ∈ ER | eR ⊂ m} |

| ER |

}
.

(2) The opponent’s substitution attack: the
largest probability of an opponent’s successful substi-
tution attack is PS . Then
PS = max

m∈M
max

m̸=m′∈M
| {eR ∈ ER | eR ⊂ m, eR ⊂ m′} |

| {eR ∈ ER | eR ⊂ m} |

 .

(3) There might l(1 ≤ l ≤ n) malicious senders
who together cheat the receiver, that is, the part of
senders and receiver are not credible, they can take
impersonation attack. Let L = {i1, i2, · · · , il} ⊂
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{1, 2, · · · , n}, (l ≤ n) and eL = {ei1 , ei2 , · · · , eil}.
Assume PL = {Pi1 , Pi2 , · · · , Pil}, PL, after receiv-
ing their secret keys, send a message m to receiver R,
PL is successful if the receiver accepts it as legitimate
message. Denote PI(L) is the maximum probability
of success of the impersonation attack. It can be ex-
pressed as
PI(L) = max

eL∈EL

max
eL⊂ePmax

m∈M
| {eR ∈ ER | eR ⊂ m, p(eR, eP ) ̸= 0} |

| {eR ∈ ER | p(eR, eP ) ̸= 0} |

 .

(4) The receiver’s impersonation attack: under
the current protocol, the largest probability of the re-
ceiver’s successful impersonation attack is PR0 .Then
PR0 = max

eR∈ERmax
m∈M

| {eP ∈ EP | eP ⊂ m, p(eR, eP ) ̸= 0} |

| {eP ∈ EP | p(eR, eP ) ̸= 0} |

 .

(5) The receiver’s substitution attack: under the
current protocol, the largest probability of the re-
ceiver’s successful substitution attack is PR1 . Then
PR1 = max

eR∈ER,m∈M max
m′∈M

| {eP ∈ EP | eP ⊂ m,m′, p(eR, eP ) ̸= 0} |

| {eP ∈ EP | eP ⊂ m, p(eR, eP ) ̸= 0} |

 .

Notes: (1) p (eR, eP ) ̸= 0 implies that any source
state s encoded by eP can be authenticated by eR. (2)
eP ⊂ m implies that the message m can be got by eP
encoding some source sate. (3) eR ⊂ m implies that
m can be verified to be authentic by eR.

4 Constructions
In [13], some multi-receiver authentication codes have
been constructed by using the linear codes. Similarly,
two different multi-sender authentication codes with
arbitration will be constructed by using linear codes
in this paper.

4.1 Construction 1
LetGF (q) be a finite field with q elements. The set of
source states S = GF (q)∗; the set of i-th transmitter’s
encoding rules Ei = {ei | ei ∈ GF (q)×GF (q)∗};
the set of receiver’s decoding rules ER = {eR | eR ∈
GF (q)n×k ×GF (q)n×k

∗}; the set of i-th transmit-
ter’s tags Ti = {ti | ti ∈ GF (q)}; the set of receiver’s

tags

T =

t =


γ1
γ2
...
γn


∣∣∣∣∣∣∣∣∣ γi ∈ C

 ⊂ GF (q)n×n,

where γi, 1 ≤ i ≤ n, is the row vector of t and C =
[n, k] is a linear code over GF (q). A k × n matrix G
over GF (q) is called a generator matrix of C, that is,
the row vectors of G are formed by a set of base in C.

Define the encoding map of the sender Pi (i =
1, 2, · · · , n.) as

fi : S × Ei −→ Ti, fi(s, ei) = ui + svi(1 ≤ i ≤ n),

where ei = (ui, vi) ∈ Ei.
The decoding map of the receiver R as

g : S × ER −→ T, g(s, eR) = (α+ sβ)G,

where eR = (α, β) ∈ ER. And the synthesizing map

h : T1 × T2 × · · · × Tn −→ T,

h(t1, t2, · · · , tn) = at(t1, t2, · · · , tn), where a ∈
GF (q)n∗.

This code works as follows:

1. Key distribution phase
(1) The arbiter randomly chooses an e = (u, v)

of C × C∗, assumes u = (u1, u2, · · · , un) and v =
(v1, v2, · · · , vn) such that u is linear independent with
v. Then he calculates ei = πi(e) = (ui, vi) and
(α1, β1) satisfying α1G = u, β1G = v. Again v ̸= 0,
so β1 ̸= 0, then (α1, β1) ∈ GF (q)k ×GF (q)k

∗
;

(2) The arbiter also randomly selects an a =
(a1, a2, · · · , an) ∈ GF (q)n∗ and calculates eR =
(α, β) such that α = atα1, β = atβ1;

(3) He secretly sends eR, ei to the receiver R and
sender Pi(1 ≤ i ≤ n), respectively, and sends a to the
synthesizer.

2. Broadcast phase If the senders want to send
a source state s ∈ S to the receiver R, Pi calculates
ti = fi(s, ei) = ui + svi, and sends (s, ti) to the syn-
thesizer, (1 ≤ i ≤ n).

3. Synthesis phase After the synthesizer re-
ceivers (s, (t1, t2, · · · , tn)), he calculates t =
h(t1, t2, · · · , tn)= at(t1, t2, · · · , tn), then sendsm =
(s, t) to the receiver R.

4. Verification phase When the receiver R re-
ceives m = (s, t), he calculates t′ = g(s, eR) =
(α+ sβ)G. If t = t′, he accepts t, otherwise, he re-
jects it.

Next, we will show that the above construction is
a well defined multi-sender authentication code with
arbitration.
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Lemma 1 Let Ci = (S,Ei, Ti; fi), 1 ≤ i ≤ n. Then
Ci is an A-code.

Proof: For any s ∈ S, ei ∈ Ei, we assume that
ei = (ui, vi), then ui+ svi = ti ∈ Ti. Conversely, for
any ti ∈ Ti, choose ei = (ui, vi), let fi(s, ei) = ui +
svi = ti, then svi = ti − ui, thus s = vi

−1(ti − ui).
If there is a pair of (ui, vi), s is only defined. Again,
(ui, vi) ∈ GF (q)×GF (q)∗, so the number of (s, ei)
satisfying fi is q(q − 1). That is, fi is a surjection.

If s′ ∈ S is another source state satisfying ui +
svi = ui + s′vi, then (s− s′)vi = 0. As vi ̸= 0, s −
s′ = 0, thus s = s′. That is, s is the uniquely source
state determined by ei and ti. So Ci(1 ≤ i ≤ n) is an
A-code. ⊓⊔

Lemma 2 Let C0 = (S,ER, T ; g). Then C0 is an
A-code.

Proof: For any s ∈ S, eR ∈ ER, from the definition
of eR, we assume that eR = (α, β), then

g(s, eR) = (α+ sβ)G =


γ1
γ2
...
γn

 ∈ T ;

On the other hand, for any t ∈ T , choose eR =
(α, β) ∈ ER, let g(s, eR) = (α+ sβ)G = t, then
αG = t− sβG. Because each row of t is a codeword,
so each row of t − sβG is a codeword. Thus there
must exist a α ∈ GF (q)n×k satisfying g. It means
that g is a surjection.

If s′ ∈ S is another source state satisfying
t = g(s′, eR), then (α+ sβ)G = (α+ s′β)G, thus
(s− s′)βG = 0. As β ̸= 0, βG ̸= 0, s− s′ = 0, s =
s′. That is, s is the uniquely source state determined
by eR and t. So C0 = (S,ER, T ; g) is an A-code. ⊓⊔

Lemma 3 For any valid message m = (s, t), it will
be accepted by the receiver R.

Proof: For any valid message m = (s, t), there must
exist a pair of (u, v) ∈ C × C∗ and a ∈ GF (q)n∗

such that t = at(u+ sv). According to the given
protocol, we can get u = α1G and v = β1G,
where (α1, β1) ∈ GF (q)k × GF (q)k

∗
. It is easy

to see that t = at(u+ sv) = at(α1G+ sβ1G) =
(atα1 + satβ1)G = (α+ sβ)G, where eR = (α, β)
is the key of receiver R. It means that message
m = (s, t) could be verified by the receiver, so R
will accept it. ⊓⊔

From lemma 1 to lemma 3, we can see this con-
struction is well defined. Next, we will compute the
parameters and the maximum probabilities of success
in five attacks.

Theorem 4 The parameters of constructed authenti-
cation code with arbitration are: |S| = q − 1; |Ei| =
q(q − 1); |Ti| = q; |ER| = qnk(qnk − 1); |T | = qnk.

Proof: The result is straightforward. ⊓⊔

Lemma 5 For any m ∈ M , let the number of eR
contained in m be b. Then b = qnk − 1.

Proof: Let m = (s, t) ∈ M , eR = (α, β) ∈ ER.
If eR ⊂ m, then (α+ sβ)G = t, αG = t − sβG.
Because s and t are given, for any β, we have known
each row of t−sβG is a codeword, so there must exist
a α satisfying it. That is, α is only determined by β.
As β ∈ GF (q)n×k

∗
, the number of eR contained in

m is qnk − 1. Then b = qnk − 1. ⊓⊔

Lemma 6 For any m = (s, t) ∈ M and m′ =
(s′, t′) ∈ M with s ̸= s′, let the number of eR con-
tained both in m and m′ be c. Then c = 1.

Proof: Assume eR = (α, β). If eR ⊂ m and eR ⊂
m′, then

(α+ sβ)G = t, (α+ s′β)G = t′.

From the above two equations, we can get that
(s− s′)βG = t − t′, βG = (s− s′)−1(t− t′). Be-
cause each row of (s− s′)−1(t− t′) is a fixed code-
word, so each row of β is also fixed. Again, we have
known α is is only defined by β from Lemma 5, so
the number of eR contained both in m and m′ is only
one. Then c = 1. ⊓⊔

Lemma 7 For any fixed eP = {(ui, vi) | (ui, vi) ∈
GF (q)×GF (q)∗, 1 ≤ i ≤ n} containing a given eL,
let the number of eR which is incidence with eP be d.
Then d = qn − 1.

Proof: (1). Let us firstly prove a conclusion: as-
sume a = (a1, a2, · · · , an) ∈ GF (q)n and (α1, β1) ∈
GF (q)k ×GF (q)k

∗
, if atα1 = 0 and atβ1 = 0, then

a = 0. Indeed, if atα1 = 0 and atβ1 = 0, then
a1
a2
...
an

α1 = 0,


a1
a2
...
an

β1 = 0.

Let β1 = (b1, b2, · · · , bk), then
a1
a2
...
an

β1 =


a1b1 a1b2 · · · a1bk
a2b1 a2b2 · · · a2bk

...
...

...
anb1 anb2 · · · anbk

 = 0.

WSEAS TRANSACTIONS on MATHEMATICS Chen Shangdi, Chang Lizhen

E-ISSN: 2224-2880 1106 Issue 12, Volume 11, December 2012



Again β1 ̸= 0, without loss of generality, we
assume b1 ̸= 0. As aib1 = 0(i = 1, 2, · · · , n),
ai = 0(i = 1, 2, · · · , n), that is a = 0.

(2). For any fixed eP = {(ui, vi) | (ui, vi) ∈
GF (q) × GF (q)∗, 1 ≤ i ≤ n} containing a given
eL, we assume u = (u1, u2, · · · , un), v =
(v1, v2, · · · , vn), then u ∈ C, v ∈ C∗. Therefore,
there exist a unique (α1, β1) ∈ GF (q)k × GF (q)k

∗

satisfying α1G = u and β1G = v. Next, we will con-
sider the number of eR which is incidence with eP .
Let eR = (α, β), then eR is incidence with eP if and
only if

α = a′
t
α1, β = a′

t
β1,

for some a′ ∈ GF (q)n∗. If there are a′, a′′ ∈
GF (q)n∗ satisfying α = a′tα1 = a′′tα1 and
β = a′tβ1 = a′′tβ1, then (a′t − a′′t)α1 = 0 and
(a′t − a′′t)β1 = 0. As β1 ̸= 0, according to the above
result (1), we can get a′t − a′′t = 0, a′ = a′′. That is,
the number of eR which is incidence with eP is abso-
lutely decided by a′. As a′ ̸= 0, the number of a′ is
qn − 1. Then d = qn − 1. ⊓⊔

Lemma 8 For any fixed eP = {(ui, vi) | (ui, vi) ∈
GF (q) × GF (q)∗, 1 ≤ i ≤ n} containing a given eL
and m = (s, t), let the maximum number of eR which
is incidence with eP contained inm be e. Then e = 1.

Proof: Let eR = (α, β), for any fixed eP =
{(u1, v1), (u2, v2), · · · , (un, vn)} containing a given
eL, we assume u = (u1, u2, · · · , un) ∈ C, v =
(v1, v2, · · · , vn) ∈ C∗. Similarly, there must exist
a unique (α1, β1) ∈ GF (q)k × GF (q)k

∗
such that

u = α1G and v = β1G. If eR is incidence with eP ,
then

α = a′
t
α1, β = a′

t
β1,

for some a′ ∈ GF (q)n∗. It means that the number
of eR which is incidence with eP is determined by a′.
Again, eR ⊂ m, then

(α+ sβ)G = t.

By combining the above equations, we can get

(α+ sβ)G = (a′
t
α1 + sa′

t
β1)G

= a′
t
(α1G+ sβ1G) = a′

t
(u+ sv) = t.

Because (u, v) and (s, t) have been given, so the num-
ber of a′ which satisfies the above equation is only
one. Thus we can get the number of eR which is inci-
dence with eP contained in m is at most one. That is,
e = 1. ⊓⊔

Lemma 9 For any fixed eR ∈ ER, let the number
of eP which is incidence with eR be f . Then f =
(qn − 1)(q − 1).

Proof: Let eP = {(u1, v1), (u2, v2), · · · , (un, vn)},
we assume that u = (u1, u2, · · · , un) and v =
(v1, v2, · · · , vn). Similarly, there exist a pair of
(α1, β1) satisfying u = α1G and v = β1G. For any
fixed eR = (α, β), if eR is incidence with eP , then

α = a′
t
α1, β = a′

t
β1,

for some a′ ∈ GF (q)n∗. Because (α, β) has been
given, so both a′ and (α1, β1) satisfying the above
equations could be found. Choose a λ ∈ GF (q)∗, we
can get α = (λa′t)(λ−1α1) and β = (λa′t)(λ−1β1).
It means that for any fixed a′, the number of λ sat-
isfying the above two equations is q − 1. Also,
a′ ∈ GF (q)n∗, the number of a′ satisfying them
is at most (qn − 1)(q − 1), then the number of cor-
responding (α1, β1) is (qn − 1)(q − 1), too. Mean-
time, we have known that (u, v) is determined by
(α1, β1). Therefore, the number of (u, v) satisfying
the above requirements is (qn − 1)(q − 1). That is,
f = (qn − 1)(q − 1). ⊓⊔

Lemma 10 For any fixed eR ∈ ER, m ∈ M , let the
number of eP which is incidence with eR contained in
m be g. Then g = qn − 1.

Proof: Let eP = {(u1, v1), (u2, v2), · · · , (un, vn)},
then we can get that u = (u1, u2, · · · , un), v =
(v1, v2, · · · , vn). For any fixed eR = (α, β) and
m = (s, t), if eR is incidence with eP , then, from
the Lemma 9, we can get

αG = a′
t
u, βG = a′

t
v,

for some a′ ∈ GF (q)n∗. Again, eP ⊆ m, then, from
the given protocol, we can get

t = at(u+ sv),

where a is fixed in the whole theme. Let

at =


a1
a2
...
an

 , t =


γ1
γ2
...
γn

 ,

where γi(1 ≤ i ≤ n) is the row vector of t. As u is
linear independent with v, t ̸= 0. That is, there is
at least a γi ̸= 0 satisfying that γi = ai(u+ sv),
then u + sv = a−1

i γi. Let a−1
i γi = δ. By combin-

ing the above conclusions, we can get (α+ sβ)G =
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a′t(u+ sv) = a′tδ. Because δ and (α, β) are fixed,
so the number of a′ satisfying the above equations is
at most one. It means that the value of (u, v) is inde-
pendent with the changer of a′. At the same time, we
have known u + sv = δ, u = δ − sv, thus u is only
defined by v. As v ∈ GF (q)n∗, the number of v is
qn − 1, then the number of (u, v) satisfying the above
requirements is qn − 1. That is g = qn − 1. ⊓⊔

Lemma 11 For any fixed eR = (α, β) ∈ ER, and
m = (s, t), m′ = (s′, t′) with s ̸= s′, let the largest
number of eP which is incidence with eR contained
both in m and m′ be h. Then h = 1.

Proof: Let eP = {(u1, v1), (u2, v2), · · · , (un, vn)},
then we can get that u =(u1, u2, · · · , un),
v =(v1, v2, · · · , vn). For any fixed eR = (α, β),
m = (s, t) and m′ = (s′, t′), if eP is incidence with
eR, then, from the Lemma 9, we can get

αG = a′
t
u, βG = a′

t
v,

for some a′ ∈ GF (q)n∗. Again, eP ⊆ m and eP ⊆
m′, then, from the given protocol, we can get

t = at(u+ sv), t′ = at(u+ s′v),

where a is fixed in the whole theme. Let

at =


a1
a2
...
an

 , t =


γ1
γ2
...
γn

 , t′ =


γ1

′

γ2
′

...
γn

′

 .

As u is linear independent with v, t ̸= 0 and t′ ̸= 0.
Similarly, we can get

u+ sv = δ, u+ s′v = δ′,

where δ and δ′ are fixed values, hence

v = (s− s′)
−1

(δ − δ′), u = δ−s(s− s′)
−1

(δ − δ′).

By combining the above conclusions, we can get

αG = a′
t
u = a′

t
[δ − s(s− s′)

−1
(δ − δ′)]

and

βG = a′
t
v = a′

t
[(s− s′)

−1
(δ − δ′)].

Because α, β, s, s′, δ and δ′ are fixed values, so the
number of a′ satisfying the above equations is at most
one. It means that the value of (u, v) is independent
with the changer of a′. At the same time, from the
above equation, we have known (u, v) is only fixed.
Therefore, the number of (u, v) satisfying the above
requirements is at most one. Then h = 1. ⊓⊔

Theorem 12 In the above construction 1, if the
senders’ encoding rules and the receiver’s decoding
rules are chosen according to a uniform probability
distribution, then the largest probabilities of success
for different types of deceptions are: PI = 1

qnk , PS =
1

qnk−1
, PI(L) = 1

qn−1 , PR0 = 1
q−1 , PR1 = 1

qn−1 .

Proof: (1). From Theorem 4 and Lemma 5, we
know the number of eR contained in m is b, |ER| =
qnk(qnk − 1). Then the largest probability of an op-
ponent’s successful impersonation attack is

PI = max
m∈M

{
| {eR ∈ ER | eR ⊂ m} |

| ER |

}

=
b

| ER |
=

1

qnk
.

(2). From Lemma 5 and Lemma 6, we know the
number of eR contained in m is b, the number of eR
contained both in m and m′ is c. Then the largest
probability of an opponent’s successful substitution
attack is

PS = max
m∈M

max
m̸=m′∈M

| {eR ∈ ER | eR ⊂ m, eR ⊂ m′} |

| {eR ∈ ER | eR ⊂ m} |


=
c

b
=

1

qnk − 1
.

(3). From Lemma 7 and Lemma 8, we know that
the largest probability of l malicious senders’ success-
ful impersonation attack is

PI(L) = max
eL∈EL

max
eL⊂ePmax

m∈M
| {eR ∈ ER | eR ⊂ m, p(eR, eP ) ̸= 0} |

| {eR ∈ ER | p(eR, eP ) ̸= 0} |


=
e

d
=

1

qn − 1
.

(4). From Lemma 9 and Lemma 10, we know
the number of eP which is incidence with eR is f , the
number of eP which is incidence with eR contained in
m is g. Then, under the current protocol, the largest
probability of the receiver’s successful impersonation
attack is

PR0 = max
eR∈ERmax

m∈M
| {eP ∈ EP | eP ⊂ m, p(eR, eP ) ̸= 0} |

| {eP ∈ EP | p(eR, eP ) ̸= 0} |


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=
g

f
=

1

q − 1
.

(5). From Lemma 10 and Lemma 11, we know
the number of eP which is incidence with eR con-
tained in m is g, the number of eP which is incidence
with eR contained both in m and m′ is h, Then, un-
der the current protocol, the largest probability of the
receiver’s successful substitution attack is

PR1 = max
eR∈ER,m∈M max

m′∈M
| {eP ∈ EP | eP ⊂ m,m′, p(eR, eP ) ̸= 0} |

| {eP ∈ EP | eP ⊂ m, p(eR, eP ) ̸= 0} |


=
h

g
=

1

qn − 1
.

⊓⊔

4.2 Construction 2
LetGF (q) be a finite field with q elements. The set of
source states S = GF (q)∗; the set of i-th transmitter’s
encoding rules Ei = {ei | ei ∈ GF (q)×GF (q)∗};
the set of receiver’s decoding rules ER = {eR | eR ∈
GF (q)k×GF (q)k∗}; the set of i-th transmitter’s tags
Ti = {ti | ti ∈ GF (q)}; the set of receiver’s tags
T = C, whereC = [n, k] is a linear code overGF (q).
A k × n matrix G over GF (q) is called a generator
matrix of C, that is, the row vectors of G are formed
by a set of base in C.

Define the encoding map of the sender Pi (i =
1, 2, · · · , n.) as

fi : S × Ei −→ Ti, fi(s, ei) = ui + svi(1 ≤ i ≤ n),

where ei = (ui, vi) ∈ Ei.
The decoding map of the receiver R as

g : S × ER −→ T, g(s, eR) = (α+ sβ)G,

where eR = (α, β) ∈ ER. And the synthesizing map

h : T1 × T2 × · · · × Tn −→ T,

h(t1, t2, · · · , tn) = (w1 + sw2) + (t1, t2, · · · , tn),
where a = (w1, w2) ∈ GF (q)k ×GF (q)k.

This code works as follows:

1. Key distribution phase
(1) The arbiter randomly chooses an e = (u, v)

of C × C∗ and assumes u = (u1, u2, · · · , un), v =
(v1, v2, · · · , vn). Then he calculates ei = πi(e) =
(ui, vi) and (α1, β1) satisfying α1G = u, β1G = v.
Again v ̸= 0, so β1 ̸= 0, then (α1, β1) ∈ GF (q)k ×
GF (q)k

∗
;

(2) The arbiter also randomly selects an a =

(w1, w2) ∈ GF (q)k × GF (q)k and calculates eR =
(α, β) such that α = w1 + α1, β = w2 + β1;

(3) He secretly sends eR, ei to the receiver R and
sender Pi(1 ≤ i ≤ n), respectively, and sends a to the
synthesizer.

2. Broadcast phase If the senders want to send
a source state s ∈ S to the receiver R, Pi calculates
ti = fi(s, ei) = ui + svi, and sends (s, ti) to the syn-
thesizer, (1 ≤ i ≤ n).

3. Synthesis phase After the synthesizer re-
ceivers (s, (t1, t2, · · · , tn)), he calculates t =
h(t1, t2, · · · , tn)= (w1 + sw2) + (t1, t2, · · · , tn),
then sends m = (s, t) to the receiver R.

4. Verification phase When the receiver R re-
ceives m = (s, t), he calculates t′ = g(s, eR) =
(α+ sβ)G. If t = t′, he accepts t, otherwise, he re-
jects it.

Next, we will show that the above construction is
a well defined multi-sender authentication code with
arbitration.

Lemma 13 LetCi = (S,Ei, Ti; fi), 1 ≤ i ≤ n. Then
Ci is an A-code.

Proof: The process is similar with the Lemma 1, so
we will not repeat them. ⊓⊔

Lemma 14 Let C0 = (S,ER, T ; g). Then C0 is an
A-code.

Proof: For any s ∈ S, eR ∈ ER, from the def-
inition of eR, we assume that eR = (α, β), then
g(s, eR) = (α+ sβ)G ∈ C = T ; On the other
hand, for any t ∈ T , choose eR = (α, β) ∈ ER,
let g(s, eR) = (α+ sβ)G = t, then αG = t − sβG.
Because t and sβG are codewords, so t− sβG is also
a codeword. Thus there must exist a α satisfying the
above equation. That is, g is a surjection.

If s′ ∈ S is another source state satisfying
t = g(s′, eR), then (α+ sβ)G = (α+ s′β)G,
(s− s′)βG = 0. As β ̸= 0, βG ̸= 0, s− s′ = 0, s =
s′. That is, s is the uniquely source state determined
by eR and t. So C0 = (S,ER, T ; g) is an A-code. ⊓⊔

Lemma 15 For any valid message m = (s, t), it will
be accepted by the receiver R.

Proof: For any valid message m = (s, t), there are
(w1, w2) ∈ GF (q)k×GF (q)k

∗
and (u, v) ∈ C ×C∗

such that t = (w1 + sw2)G + (u+ sv). Similarly,
from the given protocol, we can get u = α1G and
v = β1G, where (α1, β1) ∈ GF (q)k × GF (q)k

∗
.
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Hence, it is easy to see that t = (w1 + sw2)G +
(u+ sv) = (w1 + sw2)G + (α1 + sβ1)G =
[(w1 + α1) + s(w2 + β1)]G = (α+ sβ)G, where
(α, β) is the key of receiver R. That is to say that
message m = (s, t) would be verified by the receiver,
so R will accept it. ⊓⊔

From lemma 13 to lemma 15, we can know this
construction is also well defined. Next, we will com-
pute the parameters and the maximum probabilities of
success in various attacks.

Theorem 16 The parameters of constructed authen-
tication code with arbitration are: |S| = q−1; |Ei| =
q(q − 1); |Ti| = q; |ER| = qk(qk − 1); |T | = |C| =
qk.

Proof: The result is straightforward. ⊓⊔

Lemma 17 For any m ∈ M , let the number of eR
contained in m be b′. Then b′ = qk − 1.

Proof: Let m = (s, t) ∈ M , eR = (α, β) ∈ ER.
If eR ⊂ m, then (α+ sβ)G = t, αG = t − sβG.
Because s and t have been given, for any fixed β, we
have known t−sβG is a codeword, so there must exist
a α satisfying it. That is, α is only determined by β.
As β ∈ GF (q)k

∗
, the number of eR contained in m is

qk − 1. Then b′ = qk − 1. ⊓⊔

Lemma 18 For any m = (s, t) ∈ M and m′ =
(s′, t′) ∈ M with s ̸= s′, let the number of eR con-
tained both in m and m′ be c′. Then c′ = 1.

Proof: Assume eR = (α, β) ∈ ER. If eR ⊂ m and
eR ⊂ m′, then

(α+ sβ)G = t, (α+ s′β)G = t′.

From the above two equations, we can get that
(s− s′)βG = t − t′, βG = (s− s′)−1(t− t′). Be-
cause (s, t) and (s′, t′) have been given, at the same
time, we can get (s− s′)−1(t− t′) is a fixed code-
word, so β is also fixed. Again, we have known α is
only defined by β from Lemma 17, then the number
of eR contained both in m and m′ is only one. That is
c′ = 1. ⊓⊔

Lemma 19 For any fixed eP = {(ui, vi) | (ui, vi) ∈
GF (q)×GF (q)∗, 1 ≤ i ≤ n} containing a given eL,
let the number of eR which is incidence with eP be d′.
Then d′ = qk(qk − 1).

Proof: Let eR = (α, β) ∈ ER, for any
fixed eP = {(ui, vi) | (ui, vi) ∈ GF (q) ×
GF (q)∗, 1 ≤ i ≤ n} containing a given eL, we as-
sume u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn),

then u ∈ C, v ∈ C∗. Therefore, there exist a unique
(α1, β1) ∈ GF (q)k × GF (q)k

∗
satisfying α1G = u

and β1G = v. Next, we will consider the number of
eR which is incidence with eP . If eR is incidence with
eP , then

α = w′
1 + α1, β = w′

2 + β1,

for some a′ = (w′
1, w

′
2) ∈ GF (q)k×GF (q)k. Hence,

(α, β) is only determined by (w′
1, w

′
2) because of their

linear relationship. As (w′
1, w

′
2) ∈ GF (q)k×GF (q)k

and β ̸= 0, the number of (w′
1, w

′
2) is qk(qk − 1).

Thus the number of eR which is incidence with eP is
qk(qk − 1). That is d′ = qk(qk − 1). ⊓⊔

Lemma 20 For any fixed eP = {(ui, vi) | (ui, vi) ∈
GF (q) × GF (q)∗, 1 ≤ i ≤ n} containing a given eL
and m ∈ M , let the maximum number of eR which
is incidence with eP contained in m be e′. Then e′ =
qk − 1.

Proof: Let eR = (α, β) ∈ ER, for any fixed eP =
{(u1, v1), (u2, v2), · · · , (un, vn)} containing a given
eL and m = (s, t), if eR is incidence with eP , accord-
ing to the Lemma 19, we can get

αG = w′
1G+ u, βG = w′

2G+ v,

for some a′ = (w′
1, w

′
2) ∈ GF (q)k × GF (q)k. It

means that the number of eR which is incidence with
eP is determined by a′. Again, eR ⊂ m, then

(α+ sβ)G = t.

By combining the above equations, we can get

w′
1G+sw′

2G+u+sv = (w′
1 + sw′

2)G+u+sv = t,

then (w′
1 + sw′

2)G = t−(u+ sv). Because (s, t) and
(u, v) have been given, meantime, t − (u+ sv) ∈ C
which means that t− (u+ sv) is a fixed codeword, so
w′
1 + sw′

2 is also fixed. Let w′
1 + sw′

2 = δ, where δ is
a fixed codeword, then w′

1 = δ− sw′
2, thus w′

1 is only
determined by w′

2. As w′
2 ∈ GF (q)k and β ̸= 0, the

number of w′
2 is qk − 1. Then the number of (w′

1, w
′
2)

which satisfies the above equation is qk−1. Hence the
number of eR which is incidence with eP contained in
m is qk − 1, too. So e′ = qk − 1. ⊓⊔

Lemma 21 For any fixed eR ∈ ER, let the number
of eP which is incidence with eR be f ′. Then f ′ =
qk(qk − 1).

Proof: Let eP = {(u1, v1), (u2, v2), · · · , (un, vn)}∈
EP , for any fixed eR = (α, β) ∈ ER, if eR is inci-
dence with eP , according to the Lemma 19, we can
get that

α = w′
1 + α1, β = w′

2 + β1,
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for some (w′
1, w

′
2) ∈ GF (q)k ×GF (q)k. Then α1 =

α − w′
1, β1 = β − w′

2, thus (α1, β1) is only defined
by (w′

1, w
′
2). As (w′

1, w
′
2) ∈ GF (q)k × GF (q)k, the

number of (w′
1, w

′
2) which satisfies the above equa-

tions is qkqk. Again, β ̸= 0, hence, the number of
(α1, β1) is qk(qk − 1). At the same time, from the
Lemma 19, we have known that (u, v) is only de-
termined by (α1, β1), so the number of (u, v) sat-
isfying the above requirements is qk(qk − 1). Then
f ′ = qk(qk − 1). ⊓⊔

Lemma 22 For any fixed eR ∈ ER, m ∈ M , let the
number of eP which is incidence with eR contained in
m be g′. Then g′ = qk − 1.

Proof: Let eP = {(u1, v1), (u2, v2), · · · , (un, vn)}∈
EP , assume u = {u1, u2 · · · , un} and v =
{v1, v2 · · · , vn}. For any fixed eR = (α, β) and
m = (s, t), if eP is incidence with eR, according to
the lemma 19, we can get

αG = w′
1G+ u, βG = w′

2G+ v,

for some (w′
1, w

′
2) ∈ GF (q)k×GF (q)k. Again, eP ⊂

m, then, from the given protocol, we can get

t = (w1 + sw2)G+ (u+ sv),

where (w1, w2) is fixed in the whole theme. Thus we
can get u + sv = t − (w1 + sw2)G. By combining
the above conclusions, we can get

(α+ sβ)G = (w′
1 + sw′

2)G+ (u+ sv)

= (w′
1 + sw′

2)G+ t− (w1 + sw2)G,

then (w′
1 + sw′

2)G = (α+ sβ)G+(w1 + sw2)G−t.
Because (α, β), (s, t) and (w1, w2) have been given,
so the value of w′

1 + sw′
2 is fixed. Let w′

1 + sw′
2 = δ′,

where δ′ is a fixed value, then w′
1 = δ′ − sw′

2, thus
w′
1 is only determined by w′

2. As w′
2 ∈ GF (q)k and

w′
2 ̸= β, the number of w′

2 is qk − 1, then the number
of (w′

1, w
′
2) is qk−1, too. At the same time, according

to the above equation, we have known (u, v) is only
defined by (w′

1, w
′
2), therefore, the number of (u, v)

satisfying the above requirements is qk − 1. That is,
g′ = qk − 1. ⊓⊔

Lemma 23 For any fixed eR = (α, β) ∈ ER, m =
(s, t) and m′ = (s′, t′) with s ̸= s′, let the largest
number of eP which is incidence with eR contained
both in m and m′ be h′. Then h′ = 1.

Proof: Let eP = {(u1, v1), (u2, v2), · · · , (un, vn)}∈
EP , assume u = {u1, u2 · · · , un} and v =
{v1, v2 · · · , vn}. For any fixed eR = (α, β) ∈ ER,

m = (s, t) and m′ = (s′, t′), if eP is incidence with
eR, similarly, we can get

αG = w′
1G+ u, βG = w′

2G+ v,

for some (w′
1, w

′
2) ∈ GF (q)k×GF (q)k. Again, eP ⊂

m and eP ⊂ m′, then, from the given protocol, we get

t = (w1 + sw2)G+ (u+ sv)

and
t′ = (w1 + s′w2)G+ (u+ s′v),

where (w1, w2) is fixed in the whole theme. Thus we
get

v = (s− s′)
−1

(t− t′)− w2G

and

u = t− s(s− s′)
−1

(t− t′)− w1G.

At the same time, by combining the above conclu-
sions, we can get

w′
2G = βG− v = βG− (s− s′)

−1
(t− t′) + w2G

and

w′
1G = αG−u = αG−t+s(s− s′)

−1
(t− t′)+w1G.

Because (α, β), (s, t), (s′, t′) and (w1, w2) have been
given, so the value of (w′

1, w
′
2) could only be fixed. It

means that (u, v) satisfying the above requirements is
independent with the changer of (w′

1, w
′
2). Also, ac-

cording to the above results, we have seen that (u, v)
is a fixed value. Thus the number of (u, v) satisfying
the above requirements is at most one, so h′ = 1. ⊓⊔

Theorem 24 In the above construction 2, if the
senders’ encoding rules and the receiver’s decoding
rules are chosen according to a uniform probability
distribution, then the largest probabilities of success
for different types of attacks are:

PI =
1
qk
, PS = 1

qk−1
, PI(L) =

1
qk
,

PR0 = 1
qk
, PR1 = 1

qk−1
.

Proof: (1). From Theorem 16 and Lemma 17, we
know the number of eR contained in m is b′, |ER| =
qk(qk − 1). Then the largest probability of an oppo-
nent’s successful impersonation attack is

PI = max
m∈M

{
|{eR∈ER|eR⊂m}|

|ER|

}
= b′

|ER| =
1
qk
.

(2). From Lemma 17 and Lemma 18, we know
the number of eR contained in m is b′, the number

WSEAS TRANSACTIONS on MATHEMATICS Chen Shangdi, Chang Lizhen

E-ISSN: 2224-2880 1111 Issue 12, Volume 11, December 2012



of eR contained both in m and m′ is c′. Then the
largest probability of an opponent’s successful substi-
tution attack is

PS = max
m∈M

{
max

m̸=m′∈M
|{eR∈ER|eR⊂m,eR⊂m′}|

|{eR∈ER|eR⊂m}|

}
= c′

b′ =
1

qk−1
.

(3). From Lemma 19 and Lemma 20, we know
that the largest probability of l malicious senders’
successful impersonation attack is

PI(L) = max
eL∈EL

max
eL⊂eP{

max
m∈M

|{eR∈ER|eR⊂m,p(eR,eP )̸=0}|

|{eR∈ER|p(eR,eP ) ̸=0}|

}
= e′

d′ =
1
qk
.

(4). From Lemma 21 and Lemma 22, we know
the number of eP which is incidence with eR is f ′, the
number of eP which is incidence with eR contained in
m is g′. Then, under the current protocol, the largest
probability of the receiver’s successful impersonation
attack is

PR0 = max
eR∈ER

{
max
m∈M

|{eP∈EP |eP⊂m,p(eR,eP )̸=0}|

|{eP∈EP |p(eR,eP ) ̸=0}|

}
= g′

f ′ =
1
qk
.

(5). From Lemma 22 and Lemma 23, we know
the number of eP which is incidence with eR con-
tained in m is g′, the number of eP which is incidence
with eR contained both in m and m′ is h′, Then, un-
der the current protocol, the largest probability of the
receiver’s successful substitution attack is

PR1 = max
eR∈ER,m∈M{

max
m′∈M

|{eP∈EP |eP⊂m,m′,p(eR,eP ) ̸=0}|

|{eP∈EP |eP⊂m,p(eR,eP )̸=0}|

}
= h′

g′ =
1

qk−1
.

⊓⊔

5 Conclusion
Multi-sender authentication codes are important cryp-
tography in secure group communication. In this
paper, we firstly gave a formal definition of multi-
transmitter A-code with arbitration and some calcu-
lating formulas. Next, we established a link between
linear code and multi-sender A-code with arbitration
by giving two constructions that can be used to derive
multi-sender authentication codes from linear codes.
Finally we calculated the parameters and the maxi-
mum probabilities of success in possible attacks. At

the same time, we can find that the best chances of
success in the corresponding attacks would be greatly
reduced when the number n and k are large enough.
From the aspect of an opponent’s attacks, the first con-
struction is more optimal than the second one.
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